<var id="bp5bz"><strike id="bp5bz"><listing id="bp5bz"></listing></strike></var>
<ins id="bp5bz"><video id="bp5bz"></video></ins><var id="bp5bz"></var>
<var id="bp5bz"></var>
<var id="bp5bz"></var>

您現在的位置:首頁 > 行測 > 判斷推理 > 邏輯判斷 >

2021國考行測答題技巧:運用關聯性信息破解綜合推理題

2020-11-05 09:56:03| 來源:中公教育蘇曉霞

綜合推理題型的設置是綜合使用了演繹推理中的多個規則。行測中的綜合推理,主要以命題為依托的綜合推理。解題時,首先找到關聯性信息;然后綜合使用命題中的各種簡化符號與推理規則與推理規則;最后,再通過命題之間的關聯性信息,找到破解綜合推理的突破口。其實,不僅僅是綜合推理,只要涉及到多條件的題都需要借助關聯信息找到突破口,進一步推理找到答案。

【例】某公司需要派員工參加全國的專業論壇,人員選派標準有以下幾個注意點:

(1)甲和乙兩人至少要去一個人;

(2)甲和丁不能一起去;

(3)甲、戊、己三人中要派兩人去;

(4)乙、丙兩人中去一個人;

(5)丙、丁兩人中去一個人;

(6)若丁不去,則戊也不去。

據此,可以推斷出,( )被選派去參加論壇了。

A.甲、乙、丙、己 B.乙、丙、戊、己

C.乙、丙、丁、戊 D.乙、丁、戊、己

解題方案一:

整理題干信息

(1)甲或乙

(2)要么甲,要么丁

(3)甲、戊、己(三人選兩人)

(4)(乙且丙)或(非乙且非丙)

(5)要么丙,要么丁

(6)非丁 →非戊

解題方案二:

第一步:觀察四個選項,發現都含有乙,所以乙必然參加。

第二步:假設法:假設乙去,和它相關的題干信息(4)可知,丙不能參加,符合這兩個條件,只有D項。故答案選D。

第三步:通過觀察整理出來的題干信息中,甲出現的頻次較高,并且由甲的情況,可以推出和它相關聯的其它人,因此可采用假設法去解題。

第四步:假設甲去,由(2)可知,“要么,要么”肯定了一個肢命題,另一肢命題一定為假,即可得出結論:非丁。“非丁”與條件(6)中的信息相關,根據假言命題推理規則:肯前肯后,可知非丁→非戊,得出結論“非戊”。“非戊”與條件(3)相關,根據“甲、戊、己(三人選兩人)”,可得出結論,甲、己去。“非丁”結合(5)“要么,要么”推理規則”否定了一個肢命題,另一肢命題一定為真,即可得出結論:丙去。“丙去”與條件(4)可知乙且丙。假設沒有出現矛盾,假設成立。綜合上述推理過程可知,甲、乙、丙、己。故答案選D。

聲明:本站點發布的來源標注為“中公教育”的文章,版權均屬中公教育所有,未經允許不得轉載。
(責任編輯:張珅)

免責聲明:本站所提供試題均來源于網友提供或網絡搜集,由本站編輯整理,僅供個人研究、交流學習使用,不涉及商業盈利目的。如涉及版權問題,請聯系本站管理員予以更改或刪除。

備考工具
圖書
中国福利彩票官网